Page:EB1911 - Volume 23.djvu/409

From Wikisource
Jump to navigation Jump to search
This page needs to be proofread.
392
ROADS AND STREETS
  


disk-shaped rammers, and afterwards smoothed with irons heated to a dull redness. The original rock is thus, as it were, reconstructed by taking advantage of the power of coherence of the molecules under pressure when hot. In heating the powder the moisture combined in the limestone must be driven off without reducing the proportion of the bitumen more than is unavoidable. The powder cools very slowly, and may be conveyed long distances from the ovens; it may even be kept till the next day before use. When laid it should still retain temperature of from 150° to 200°. It is spread evenly with a rake by skilled workmen for the whole width of the street to a thickness about two-fifths greater than the finished coating is intended to be. Ramming is commenced with light blows to ensure equality of compression throughout, and is continued with increased force until the whole is solidified. The ramming follows up the spreading, so that a joint is required only when the work is interrupted at the end of a day, or from some other cause. In a few hours after it has been laid an asphalt pavement may be used for traffic. When finished, its thickness may be from 11/2 to 21/4 in., according to the traffic; a greater thickness than the latter cannot be evenly compressed with certainty. The asphalt loses thickness by compression under the traffic for a long time and to the extent, it is said, of one-fifth or one-fourth, but the wear appears to be very small. The wear-resisting power of the asphalt is due to its elasticity; tracks are made by the wheels at first, but when thoroughly compressed by the trafhc the surface retains little or no trace of the heaviest loads. Repairs are easily and quickly made by cutting out defective places and ramming in fresh heated powder, which can be done in the early morning without stopping the traffic. An unyielding foundation is indispensable; it should be of the best Portland cement concrete, 6 in. in thickness, which must be well set and perfectly dry throughout before the asphalt is laid, or the steam generated on the application of the hot powder will prevent coherence and lead to cracks and holes in the asphalt, which quickly enlarge under the traffic. For the same reason the asphalt should be laid in dry weather. The concrete foundation must be carefully formed to the proper profile, with an inclination towards the sides of not more than 1 in 50, which is sufficient with so smooth a surface. About 1 in 50 is the steepest gradient; at which an asphalt pavement can be safely laid. When either dry or wet it affords good foothold for horses, but when beginning to get wet, or drying, it is often extremely slippery. This is said to be due to dirt on the surface, and not to the nature of the material. Sand is strewed over the surface to remedy the slipperiness; it tends, however, to wear out the asphalt, and great cleanliness is the best preventive. An asphalt pavement can be kept cleaner than any other, is impervious to moisture, and dries quickly. While the road is kept clean, a very slight depression is made by the horsef shoe, which for foothold is a great advantage. The noise made on asphalt by horse-traffic is about the same as that made on hard wood, and is not much more than is necessary for the safety of foot-passengers. In American cities asphalt has been adopted in a totally different form. All asphalt pavements are composed of a very large proportion, perhaps five parts in six, of a hard non-bituminous material. In America it is found cheaper to get the purer bitumen of the island of Trinidad, and to procure in the localities the bulky material required for admixture—a coarse angular sand with a little pure carbonate of lime. An asphaltic cement is made from refined asphaltum. Of this, from 12 to 15% is used with 70 to 80% of sand and 5 to 15% of limestone dust. These materials are heated and stirred together into a stiff mastic paste to form the wearing surface of the road. Upon the concrete foundation is first spread a layer of fine bituminous concrete called “binder,” 11/2 in. thick, to unite the wearing surface to the concrete foundation. Upon the binder the asphalt is laid to a thickness of 2 in., being spread with iron takes and brought to its finished surface by the steam roller. Obviously this is a process requiring great judgment and experience; but the system has become established in America, to the exclusion of European methods. Its great recommendation is the freedom from slipperiness that is said to result from the admixture of sharp sand, and this freedom is really the one quality in which asphalt pavement is seriously deficient. This system has been introduced into England.

Wood-Paving.—Wood.pavements were introduced in England in 1839. Hexagonal blocks of fir, 6 to 8 in. across and 4 to 6 deep, were bedded in gravel laid on a foundation previously levelled and beaten. The blocks were either bevelled off at the edges or grooved across the face to afford foothold. Other wood pavements were tried in London about the same time, but they soon got out of order from unequal settlement of the blocks, and most of them lasted but aifew.years. The “improved wood pavement” was first used in London in 1871. After the foundation was formed to the proper cross-section a bed of sand 4 in. deep was laid, upon which came two layers of inch deal boards saturated with boiling tar, one layer across the other. The wooden blocks were 3 in. wide, 5 deep, and 9 long; they were dipped in tar and laid on the boards with the ends close together, but transversely the courses were spaced by fillets of wood three-fourths of an inch wide nailed to the floor and to the blocks. The joints were filled up with clean pebbles rammed in, and were run with a composition of pitch and tar, the surfacerbeing dressed with boiling tar and strewed with small sharp gravel and sand. In this pavement somewhat elastic foundation was provided in the boards, which were also intended to prevent unequal, settlement of the blocks; but the solidity of the pavement depended upon its water-tightness, for, when the surface water reached the sand, as it did sooner or later, settlement and dislocation of the blocks under the traffic arose. Pavements on this system were laid between, 1872 and 1876, and were kept in repair and relaid from time to time, but about 1877 the plank foundation was abandoned for a foundation of cement concrete, which is now generally employed. Australian hard woods have tova large extent supplanted the fir and pine which were at one time used as the materials for wood-paving. The softer woods, which afford reasonably good foothold and are comparatively, noiseless, wear rapidly under heavy traffic, and are very liable to decay. Moreover, the wood actually used has been of, mixed qualities, and when a block fails, those near it suffer; thus holes are formed, so that the pavement has, to be renewed before its time. English oak and beech, which, are perhaps too hard., have been used with varying results; but the Australian woods of the genus Eucalyptus have been most extensively tried, and with the most satisfactory results. Those which are best known are jarrah and kauri, but tallow wood, black butt, blue-gum, red-gum, and spotted-gum, with others, have been tried. Of these, one or two are too dense and hard to afford foothold, others are not easily procured, but jarrah and kauri are used extensively. When cut from the matured heart-wood they are uniform in quality, hard enough for durability, and rough enough to afford fairly good foothold. A very large quantity of wood has been used in London under the name of American red-gum. In substance it comes between the soft and hard woods above mentioned. Wood blocks for paving must be cut with the utmost precision as to the depth of 5 or 6 in. and the breadth of 3 in.. The usual length of 8 or 9 in. should also be kept well enough for bond. Along block is liable to tilt. As to depth, although a slight depression may be of little account, the least projection in a block will be immediately noted as a jolt by the swift-moving wheel. The laying and jointing of wood blocks on concrete. is still a matter of experiment. They may be set on a half-inch bed of sand, which is supposed to, though it is doubtful whether it actually does, make the pavement elastic to the tread. If the blocks are not accurately gauged, the sand enables the paviour to adjust them to a uniform surface. But the practice most approved is to pave directly upon the smoothly finished concrete, trusting for elasticity to the wood. On the revival of wood-paving it was thought necessary, for foothold, to leave