Page:EB1911 - Volume 08.djvu/163

From Wikisource
Jump to navigation Jump to search
This page has been validated.
148
DIAGRAM
  


the diagram we may represent these external forces as links, that is to say, straight lines joining the points of the frame to points external to the frame. Thus each weight may be represented by a link joining the point of application of the weight with the centre of the earth.

But we can always construct an imaginary frame having its joints in the lines of action of these external forces, and this frame, together with the real frame and the links representing external forces, which join points in the one frame to points in the other frame, make up together a complete self-strained system in equilibrium, consisting of points connected by links acting by pressure or tension. We may in this way reduce any real structure to the case of a system of points with attractive or repulsive forces acting between certain pairs of these points, and keeping them in equilibrium. The direction of each of these forces is sufficiently indicated by that of the line joining the points, so that we have only to determine its magnitude. We might do this by calculation, and then write down on each link the pressure or the tension which acts in it.

We should in this way obtain a mixed diagram in which the stresses are represented graphically as regards direction and position, but symbolically as regards magnitude. But we know that a force may be represented in a purely graphical manner by a straight line in the direction of the force containing as many units of length as there are units of force in the force. The end of this line is marked with an arrow head to show in which direction the force acts. According to this method each force is drawn in its proper position in the diagram of configuration of the frame. Such a diagram might be useful as a record of the result of calculation of the magnitude of the forces, but it would be of no use in enabling us to test the correctness of the calculation.

But we have a graphical method of testing the equilibrium of any set of forces acting at a point. We draw in series a set of lines parallel and proportional to these forces. If these lines form a closed polygon the forces are in equilibrium. (See Mechanics.) We might in this way form a series of polygons of forces, one for each joint of the frame. But in so doing we give up the principle of drawing the line representing a force from the point of application of the force, for all the sides of the polygon cannot pass through the same point, as the forces do. We also represent every stress twice over, for it appears as a side of both the polygons corresponding to the two joints between which it acts. But if we can arrange the polygons in such a way that the sides of any two polygons which represent the same stress coincide with each other, we may form a diagram in which every stress is represented in direction and magnitude, though not in position, by a single line which is the common boundary of the two polygons which represent the joints at the extremities of the corresponding piece of the frame.

We have thus obtained a pure diagram of stress in which no attempt is made to represent the configuration of the material system, and in which every force is not only represented in direction and magnitude by a straight line, but the equilibrium of the forces at any joint is manifest by inspection, for we have only to examine whether the corresponding polygon is closed or not.

The relations between the diagram of the frame and the diagram of stress are as follows:—To every link in the frame corresponds a straight line in the diagram of stress which represents in magnitude and direction the stress acting in that link; and to every joint of the frame corresponds a closed polygon in the diagram, and the forces acting at that joint are represented by the sides of the polygon taken in a certain cyclical order, the cyclical order of the sides of the two adjacent polygons being such that their common side is traced in opposite directions in going round the two polygons.

The direction in which any side of a polygon is traced is the direction of the force acting on that joint of the frame which corresponds to the polygon, and due to that link of the frame which corresponds to the side. This determines whether the stress of the link is a pressure or a tension. If we know whether the stress of any one link is a pressure or a tension, this determines the cyclical order of the sides of the two polygons corresponding to the ends of the links, and therefore the cyclical order of all the polygons, and the nature of the stress in every link of the frame.

Reciprocal Diagrams.—When to every point of concourse of the lines in the diagram of stress corresponds a closed polygon in the skeleton of the frame, the two diagrams are said to be reciprocal.

The first extensions of the method of diagrams of forces to other cases than that of the funicular polygon were given by Rankine in his Applied Mechanics (1857). The method was independently applied to a large number of cases by W. P. Taylor, a practical draughtsman in the office of J. B. Cochrane, and by Professor Clerk Maxwell in his lectures in King’s College, London. In the Phil. Mag. for 1864 the latter pointed out the reciprocal properties of the two diagrams, and in a paper on “Reciprocal Figures, Frames and Diagrams of Forces,” Trans. R.S. Edin. vol. xxvi., 1870, he showed the relation of the method to Airy’s function of stress and to other mathematical methods. Professor Fleeming Jenkin has given a number of applications of the method to practice (Trans. R.S. Edin. vol. xxv.).

L. Cremona (Le Figure reciproche nella statica grafica, 1872) deduced the construction of reciprocal figures from the theory of the two components of a wrench as developed by Möbius. Karl Culmann, in his Graphische Statik (1st ed. 1864–1866, 2nd ed. 1875), made great use of diagrams of forces, some of which, however, are not reciprocal. Maurice Levy in his Statique graphique (1874) has treated the whole subject in an elementary but copious manner, and R. H. Bow, in his The Economics of Construction in Relation to Framed Structures (1873), materially simplified the process of drawing a diagram of stress reciprocal to a given frame acted on by a system of equilibrating external forces.

Fig. 1 Diagram of Configuration.

Instead of lettering the joints of the frame, as is usually done, or the links of the frame, as was the custom of Clerk Maxwell, Bow places a letter in each of the polygonal areas enclosed by the links of the frame, and also in each of the divisions of surrounding space as separated by the lines of action of the external forces. When one link of the frame crosses another, the point of apparent intersection of the links is treated as if it were a real joint, and the stresses of each of the intersecting links are represented twice in the diagram of stress, as the opposite sides of the parallelogram which corresponds to the point of intersection.

This method is followed in the lettering of the diagram of configuration (fig. 1), and the diagram of stress (fig. 2) of the linkwork which Professor Sylvester has called a quadruplane.

In fig. 1 the real joints are distinguished from the places where one link appears to cross another by the little circles O, P, Q, R, S, T, V. The four links RSTV form a “contraparallelogram” in which RS = TV and RV = ST. The triangles ROS, RPV, TQS are similar to each other. A fourth triangle (TNV), not drawn in the figure, would complete the quadruplane. The four points O, P, N, Q form a parallelogram whose angle POQ is constant and equal to π — SOR. The product of the distances OP and OQ is constant. The linkwork may be fixed at O. If any figure is traced by P, Q will trace the inverse figure, but turned round O through the constant angle POQ. In the diagram forces Pp, Qq are balanced by the force Co at the fixed point. The forces Pp and Qq are necessarily inversely as OP and OQ, and make equal angles with those lines.

Fig. 2 Diagram of Stress.

Every closed area formed by the links or the external forces in the diagram of configuration is marked by a letter which corresponds to a point of concourse of lines in the diagram of stress. The stress in the link which is the common boundary of two areas is represented in the diagram of stress by the line joining the points corresponding to those areas. When a link is divided into two or more parts by lines crossing it, the stress in each part is represented by a different line for each part, but as the stress is the same throughout the link these lines are all equal and parallel. Thus in the figure the stress in RV is represented by the four equal and parallel lines HI, FG, DE and AB. If two areas have no part of their boundary in common the letters corresponding to them in the diagram of stress are not joined by a straight line. If, however, a straight line were drawn between them, it would represent in direction and magnitude the resultant of all the stresses in the links which are cut by any line, straight or curved, joining the two areas. For instance the areas F and C in fig. 1 have no common boundary, and the points F and C in fig. 2 are not joined by a straight line. But every path from the area F to the area C in fig. 1 passes through a series of other areas, and each passage from one area into a contiguous area corresponds to a line drawn in the diagram of stress. Hence the whole path from F