Page:EB1911 - Volume 04.djvu/91

From Wikisource
Jump to navigation Jump to search
This page has been proofread, but needs to be validated.
78
BLOOD

from the tissues by the blood at a similarly increased pace. These conditions are more peculiarly of importance for the supply of oxygen and the removal of carbonic acid-especially for the former, because the amount of it which can be carried by the blood is small. But as the rate at which a tissue lives, i.e. its activity, depends upon the rate of its chemical reactions, and as these are fundamentally oxidative, the more rapidly oxygen is carried to a tissue the more rapidly it can live, and the greater the amount of work it can perform within a given time. The rate of supply is of much less importance in the case of the other food substances because they are far more soluble in water, so that the supply in sufficient quantity can easily be met by a relatively slow blood flow. Hence we find that the gradual evolution of the animal kingdom goes hand in hand with the gradual development of a greater oxygen-carrying capacity of the blood and an increase in the rate of its flow.

In the groundwork of a tissue are a number of spaces—the tissue spaces. They are filled with fluid and intercommunicate freely, finally connecting with a number of fine tubes, the lymphatics, through which excess of fluid or any solid particles present are drained away. The contained fluid acts as an intermediary between the blood and the cell; from it, the cell takes its various food stuffs, these having in the first instance been derived from the blood, and into it the cell discharges its waste products. On the course of the lymphatics a number of typical structures, the lymphatic glands, are placed, and the lymph has to pass through these structures where any deleterious products are retained, and the fluid thus purified is drained away by further lymphatics and finally returned to the blood. Thus there is a second stream of fluid from the tissues, but one vastly slower than that of the blood. The flow is too slow for it to act as the vehicle for the removal of those waste products (carbonic acid, &c.) which must of necessity be removed quickly. These must be removed by the blood. The same is true for the main number of other waste products, which, however, being of small molecular size are readily absorbed into the blood stream.

But in addition to fluid, the tissue spaces may at times be found to contain solid matter in the form of particles, which may represent the debris of destroyed cells, or which are, as is quite commonly the case, micro-organisms. Apparently such material cannot be removed from a tissue by absorption into the blood stream—indeed in the case of living organisms such an absorption would in many instances rapidly prove fatal, and special provision is made to prevent such an accident. These, therefore, are made to travel along the lymphatic channels, and so, before gaining access to the blood stream and thus to the body generally, have to run the gauntlet of the protective mechanism provided by the lymphatic glands, where in the major number of cases they are readily destroyed.

Hence we see that first and foremost we have to regard the blood as a food-carrier to all the cells of the body; in the second place as the vehicle carrying away most if not all the waste products; in a third direction, it is acting as a means for transmitting chemical substances manufactured in one tissue to distant cells of the body for whose nutrition or excitation they may be essential; and in addition to these important functions there is yet another whose value it is almost impossible to overestimate, for it plays the essential rôle in rendering the animal immune to the attacks of invading organisms. The question of immunity is discussed elsewhere, and it is sufficient merely to indicate the chief means by which the blood subserves this essential protective mechanism. Should living organisms find their way into the surface cells or within the tissue spaces, the body fights them in a number of ways, (1) It may produce one or more chemical substances capable of neutralizing the toxic material produced by the organism. (2) It may produce chemical substances which act as poisons to the micro-organism, either paralysing it or actually killing it. Or (3) the organism may be attacked and taken up into the body of wandering cells, e.g. certain of the leucocytes, and then digested by them. Such cells are therefore called phagocytes (φάγειν, to eat). Thus, by its power of reacting in these ways the body has become capable of withstanding the attacks of many different varieties of micro-organisms, of both animal and vegetable origin.

General Properties.—Blood is an opaque, viscid liquid of bright red colour possessing a distinct and characteristic odour, especially when warm. Its opacity is due to the presence of a very large number of solid particles, the blood corpuscles, having a higher refractive index than that of the liquid in which they float. The specific gravity in man averages about 1.055. The specific gravity of the liquid portion, the plasma (Gr. πλάσμα, something formed or moulded, πλάσσειν, to mould), is about 1.027, whilst that of the corpuscles amounts to 1.088. To litmus it reacts as a weak alkali.

Blood Plasma.—The plasma is a solution in water of a varied number of substances, and as a solvent it confers on the blood its power of acting as a carrier of food stuffs and waste products. One important food substance, oxygen, is, however, only partly carried in solution, being mainly combined with haemoglobin in the red corpuscles. The food stuffs carried by the plasma are proteins, carbohydrates, salts and water. The main waste products dissolved in it are ammonium carbonate, urea, urates, xanthin bases, creatin and small amounts of other nitrogenous bodies, carbonic acid as carbonates, other carbon compounds such as cholesterin, lecithin and a number of other substances. Thus, if we take mammalian blood as a type, the plasma would have the following approximate composition:—

In 1000 grms. plasma—
 Water 901.51
 Substances not vaporizing at 120° C.—
  Fibrin   8.06
  Other proteins and organic substances 81.92
  Inorganic substances—
Chlorine 3.536
Sulphuric acid 0.129
Phosphoric acid 0.145
Potassium 0.314
Sodium 5.410
Calcium 0.298
Magnesium 0.218
Oxygen 0.455
  ———     8.505
     ——— 98.49
      ————
      1000.00


Proteins.—The proteins of the blood plasma belong to the two classes of the albumins and the globulins. The globulins present are named fibrinogen and serum-globulin; as its name implies, the chief physiological property of fibrinogen is that it can give rise to fibrin, the solid substance formed when blood clots. It possesses the typical properties of a globulin, i.e. it coagulates on heating (in this instance at a temperature of 56°C.), and is precipitated by half saturating its solution with ammonium sulphate. It differs from other globulins in that it is less soluble. It is only present in very small quantities, 0.4%. The other globulin, serum-globulin, is not coagulated until 75°C. is reached, and we now know that it is in reality a mixture of several proteins, but so far these have not been completely separated from one another and obtained in a pure form. On dialysing a solution of serum-globulin a part is precipitated, and this portion has been termed the eu-globulin fraction, the remainder being known, in contradistinction, as the pseudo-globulin. Again, on diluting a solution and adding a small amount of acetic acid a precipitate is formed which in some respects differs from the remainder of the globulin present. Whether in these two instances we are dealing with approximately pure substances is extremely doubtful. A further important point in connexion with the chemistry of the globulins is that dextrose may be found among their decomposition products, i.e. that a part of it, or possibly the whole, possesses a glucoside character.

Serum-albumin gives all the typical colour and precipitation reactions of the albumins. If plasma be weakly acidified with sulphuric acid, then treated with crystals of ammonium sulphate until a slight precipitate forms, filtered and the filtrate allowed to evaporate very slowly, typical crystals of serum-albumin may form. According to many it is a uniform and specific